

Strategic Principles for Exploration Implementation

Six key strategic principles to provide a sustainable program:

- Implementable in the near-term with the buying power of current budgets and in the longer term with budgets commensurate with economic growth.
- 2. Application of *high Technology Readiness Level* (TRL) technologies for near term, while focusing research on technologies to address challenges of future missions
- 3. Near-term mission opportunities with a defined cadence of compelling missions providing for an incremental buildup of capabilities for more complex missions over time
- 4. Opportunities for *US Commercial Business* to further enhance the experience and business base learned from the ISS logistics and crew market
- 5. Multi-use, evolvable Space Infrastructure
- 6. Significant *International and Commercial participation*, leveraging current International Space Station partnerships

EVOLVABLE MARS CAMPAIGN

A Pathways Approach to Exploration

EARTH DEPENDENT

PROVING GROUND

EARTH INDEPENDENT

THE TRADE SPACE

Across the | Solar Electric Propulsion • In-Situ Resource Utilization (ISRU) • Robotic Precursors • Human/Robotic Interactions • Partnership Coordination • Exploration and Science Activities

Trades

- **Cis-lunar** | Deep-space testing and autonomous operations
 - Extensibility to Mars
 - Mars system staging/refurbishment point and trajectory analyses

Mars Vicinity

- Split versus monolithic habitat
- Cargo pre-deployment
- Mars Phobos/Deimos activities
- Entry descent and landing concepts
- Transportation technologies/trajectory analyses

MARS IS HARD

THERE & BACK

- The ability to launch a very powerful rocket
- High-reliability spacecraft systems
- Size requirements of crew capsule
- Validation of performance of SLS and Orion in the deep space environment (hotter, colder, radiation)

- Deep space navigation
- Rendezvous and docking
- Life support systems
- High speed re-entry

HAPPY & HEALTHY

- Air, water, food
- Waste containment
- Psychological impact
- Low- / no-gravity
- Medical emergencies

- Bone loss
- Radiation
- Ocular degeneration
- Hygiene

WELL EQUIPPED & PRODUCTIVE

- Sample handling
- Microgravity operations
- Space suits

- Advanced training and tools
- Mission planning

- Situational awareness and decision making
- Crew relationships

Evolutionary Capabilities

	EARTH RELIANT Return to Earth; hours	PROVING GROUND Return to Earth: days	EARTH INDEPENDENT Return to Earth: many months
Transportation	EARTH-BASED SUPPORT: HIGH Low-Earth Orbit	EARTH-BASED SUPPORT: LIMITED Cis-lunar Space	EARTH-BASED SUPPORT: NEGLIGIBLE Mars and Beyond
Crew Transit	 Routine crew rotations via international and industry partners Earth Re-entry: 3,000°F 	 2-4 crew launch aboard evolvable Space Launch System Orion Earth Re-entry: 5,300°F 	 Up to 6 crew launch aboard Space Launch System Orion Earth Re-entry: 5,500°F
Cargo Transit	Routine cargo deliveries to LEO via industry and international partners	105t SLS to lunar vicinity	 130t SLS to Mars and beyond Crew must live and work without resupply from Earth
Propulsion & Energy Storage	Large scale use of solar panels	 Demonstrate potential resource utilization techniques Demonstrating high-power, advanced solar electric propulsion 	 Potential to expand resource utilization Utilizing large-scale solar electric and other advanced propulsion
Planetary rendezvous & landings	Planetary rendezvous with strong gravity field	 Deep Space Rendezvous; gravity free Lunar surface landers 	 Phobos/Deimos micro-gravity rendezvous Mars entry, descent, landing on surface

Mars 2020 Collaboration Among SMD, HEOMD and STMD

Mars 2020 will seek signs of past life on Mars, collect and store a set of soil and rock samples that could be returned to Earth in the future, and test new technology to benefit future robotic and human exploration of Mars.

HEOMD / SMD / STMD are jointly sponsoring investigations to address high priority strategic knowledge gaps and technology development objectives for Human Exploration

- Mars Entry, Descent and Landing Instrumentation (MEDLI) to refine atmospheric entry models to inform future landing system design
- Exploration technology payloads that make significant progress towards filling at least one major Strategic Knowledge Gap.

46

Lunar CATALYST

Lunar CArgo Transportation And Landing bY Soft Touchdown

BRINGING THE MOON INTO EARTH'S ECONOMIC SPHERE

Accelerating private-sector lunar landing capabilities with NASA expertise using public-private partnerships

STATUS

Currently evaluating proposals with partner selections in April and executed agreements in May 2014

Evolutionary Capabilities

	EARTH RELIANT Return to Earth: hours	PROVING GROUND Return to Earth: days	EARTH INDEPENDENT Return to Earth: many months
Working In Space	EARTH-BASED SUPPORT: HIGH Mastering the Fundamentals	EARTH-BASED SUPPORT: LIMITED Pushing the Boundaries	EARTH-BASED SUPPORT: NEGLIGIBLE Exploring Independently
Exploration and Science	Microgravity science and human physiology research	Sampling asteroid for return to Earth for analysis	 Mars moons and surface exploration and search for life with in-situ analysis
Communicating with Earth	Immediate and continuous support from mission control	Limited delay with minimal crew impact	 Independent and self-reliant crew operates with up to 40 min. delay
Spacewalk and Mobility	Zero-g outside spacecraft for short distances	Zero-g systems for short-distance, exploration	 Surface exploration in partial gravity with longer distance and duration
Spacecraft Assembly & Maintenance	 Crew-assisted ISS Assembly Frequent deliveries & servicing 	 Limited deliveries requires more efficient systems with common, interchangeable parts 	 Maintenance with only the parts and tools they carry or produce in-situ
Human-Robotic Interactions	Testing safety and control methods for efficient human-robotic teams	Human- robot teams, with periods where robots are left alone	 Pre-deployed equipment depends on robots until humans arrive, then human- robot teams share critical tasks
In-situ Resource Utilization	Recycle and reuse water and trash	Learning to recycle destination resources for fuel, water, oxygen, and building materials	Crew harvests destination resources to create fuel, water, oxygen, and building materials

Evolutionary Capabilities

	EARTH RELIANT Return to Earth: hours	PROVING GROUND Return to Earth: days	EARTH INDEPENDENT Return to Earth: many months
Staying Healthy	EARTH-BASED SUPPORT: HIGH Mission Duration: 6-12 months	EARTH-BASED SUPPORT: LIMITED Mission Duration: 1-12 months	EARTH-BASED SUPPORT: NEGLIGIBLE <i>Mission Duration:</i> 2-3 years
Spacecraft Life Support Systems	 Developing onboard life support systems for long-duration missions 	Validating onboard recycling and regenerating life support systems without resupply	Living and working in spacecraft that must fully support crew for years
Human Health and Performance	 Studying space environment health risks and testing solutions 	Applying health and performance risk mitigation techniques	 Living in space for years while maintaining crew health and performance
Autonomous Medicine	Developing integrated medical capability and crew-reliant medical care	Testing semi-autonomous integrated medical capability and crew-reliant medical treatment	Autonomous medical capability and medical crewmember for diagnosis and treatment
Environmental Monitoring	Testing on-board environmental monitors with ground validation	Demonstrating onboard environmental monitoring systems (no sample return)	Monitoring crew environment for hazards, eliminating environmental emergencies
Advanced Space Suits	Testing next-generation space suits	Demonstrating advanced space suits in deep space	Conducting EVAs in unprecedented planetary environments

HUMAN EXPLORATION NASA's Path to Mars

EARTH RELIANT

MISSION: 6 TO 12 MONTHS RETURN TO EARTH: HOURS

PROVING GROUND

MISSION: 1 TO 12 MONTHS RETURN TO EARTH: DAYS

MARS READY

MISSION: 2 TO 3 YEARS
RETURN TO EARTH: MONTHS

Mastering fundamentals aboard the International Space Station

U.S. companies provide access to low-Earth orbit

Expanding capabilities by visiting an asteroid redirected to a lunar distant retrograde orbit

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion spacecraft

Developing planetary independence by exploring Mars, its moons and other deep space destinations